Acta Cryst. (1965). 19, 281

The crystal structures of PuGa₄ and PuGa₆*. By F. H. ELLINGER and W. H. ZACHARIASEN[†], University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, U.S.A.

(Received 7 December 1964)

In a recent paper (Ellinger, Land & Struebing, 1964) $PuGa_3$ was reported to be the most gallium-rich intermediate phase in the plutonium–gallium system. However, further work in this laboratory has shown the existence of both $PuGa_4$ and $PuGa_6$. Their presence was first indicated in thermal analysis experiments carried out by Land, Ellinger & Johnson (1965).

This paper reports the crystal structures of the two compounds as deduced from powder X-ray diffraction patterns.

* Work performed under the auspices of the U.S. Atomic Energy Commission.

† Consultant to Los Alamos Scientific Laboratory.

The experimental work has been described by Ellinger, Land & Struebing (1964). The unit-cell dimensions were calculated from the lines with $\sin^2 \theta$ greater than 0.9 and are based upon the chromium radiation wave lengths: $K\alpha_1$ 2.28962 and $K\alpha_2$ 2.29351 Å. The reliabilities are expressed as double the uncertainties indicated by the agreement of the observed and calculated $\sin^2 \theta$ values greater than 0.9. The atomic parameters were determined by the trial and error method and the limits of error were estimated.

PuGa₄ PuGa₄ has the $D1_b$ structure (UAl₄ type) with $a=4.380\pm0.001$, $b=6.290\pm0.001$, $c=13.673\pm0.004$ Å.

Tab	le 1	. Diffr	action	data	for	PuGa ₄	(Cr	$K\alpha$)

			Table	1. Diffracti	on data for PuGa ₄ (0	$Cr K\alpha$)			
	104 si	n²θ	Inte	nsity		104 s	in²0	Inte	nsity
hkl	calc.	obs.	obs.	calc.	hkl	calc.	obs.	obs.	calc.
002	280			0.0	141	6062	6085	w	4.9
011	401	410	vw	3.2	136	6188]	6212		[16·0
101	753	767	w	4.8	. 301	6219	6212	m	Í 2·1
013	962	980	w +	6.8	233	6345 j	(200		2.6
004	1122	1141	w —	4.5	109	6361	6389	mw	5.3
112	1294			(17.5	037	6416	<i></i>		2.0
103	1314	1316	nıw	3.6	044	6421	6447	mw	5.4
020	1325			1.2	217	6499	6522	mw	9.0
022	1605 ´	1631	vw	2.0	226	6582			(20.6
121	2078			∫ 54·1	143	6613	6592	m+	j 6·5
015	2083	2102	ms	1.6	312	6760			10.7
114	2136			0.0	303	6780	6769	т	$12\cdot 2$
105	2435			50.3	0.0.10	7010	7023	т	10.7
024	2447	2464	S	32.6	208	7219	7228	w	4.8
006	2524			0.1	235	7466	7473	vw —	2·0
123	2639	2662	mw	14.5	321	7544	7550	s+	31.6
200	2733	2759	m	25.6	314	7602	7550	3 -	510
202	3013	2137		0.0	129	7686	7698	vs	47.1
031	3051	3079	w	5.5	145	7734	7746	vs	59.8
211	3134	3156	vw	2.4	046	7823	//40	US	0.2
116	3538	3560	w	5.7	305	7901	7907	<i>s</i> +	36.4
033	3612	3643	vw	1.2	1.1.10	8024		3 -	{ 7·7
213	3695	3727	w	6.4	240	8032 (8040	s +	36.7
125	3760		~	(1·7	323	8105	8113	w	12.2
017	3766	3795	w	4.2	138	8150	0115	w	0.2
026	3849			(9.9	242	8312			0 2 0·4
204	3855	3880	mw	4.4	0.2.10	8335			0.4
132	3944	3978	w —	4.2	051	8350			0.0
220	4058	4093	uw uw	1.4	228	8544	8548	<i>s</i> +	30.1
107	4118	4153	UW UW	1.4	039	8659	0340	3 +	0.0
222	4338	4360	w	2.1	219	8742		t=0.00	2.9
008	4486	4516	w	2.7	0.1.11	8813	8818	trace	5.3
035	4733	+510	w	1.0	053	8911	8912	<i>vw</i> +	9·4
134	4786 l			(2.8)	316	9004	9003	w	10.2
215	4816	4816	w +	2.0 2.1	237	9149	9003	mw	10-2 (7.6
224	5180	5204	<u> </u>	45.2	237	9149	9152		19.8
206	5257	5204	\$	43·2 0·1	244 1·0·11	9165	9152	S	19.8
040	5299	5326		16.6	325	9226			4.2
127	5443	5520	ทาพ	0.2	325 152	9226	9249	<i>s</i> +	32.0
118	5500	5526	124.1.1	1.8	332	9243			11.4
042	5579	5520	mw	0.2	147	9410 (9417 (9406	т	4.9
231	5784	5806	M141	0.2 9.2	307	9417 J 9584			(4·9 5·2
028	5811	5800	mw —	11.2	2.0.10	9384 9743	9744	vw	100·0
019	6009	5045	mw —	11.2	2.0.10	9743 9785		vs s*	100·0 31·9
019	0007			1.0	040	7/03	9778	5	21.9

* Coincidence with α_2 of 2.0.10.

The calculated density is 9.13 g.cm^{-3} . The space group is *Imma* and the atomic positions are

4Pu in 4(e):
$$\pm (0 \ddagger z)$$
 with $z = 0.114$
4 Ga(1) in 4(b): $(0 \ 0 \ddagger 2)$
4 Ga(2) in 4(e): $\pm (0 \ddagger z)$ with $z - 0.106$
8 Ga(3) in 8(h): $\pm (0 y z)$ with $y = -0.028$, $z = 0.300$

The bond lengths, accurate to about ± 0.05 Å, were calculated with a Maniac program written by A. C. Larson (1964). They are as follows:

Pu-4 Ga(1)	3·11 Å	Ga(1)–4 Pu	3·11 Å
-2 Ga(2)	3.15	-2 Ga(1)	3.15
-1 Ga(2)	3.01	-4 Ga(2)	3.06
-4 Ga(3)	3.04	-2 Ga(3)	2.74
-2 Ga(3)	3.09		
Ga(2)-1 Pu	3·01 Å	Ga(3)–1 Pu	3.09
-2 Pu	3.15	–2 Pu	3.04
-4 Ga(1)	3.06	-1 Ga(1)	2.74
-4 Ga(3)	2.90	-2 Ga(2)	2.90
-2 Ga(3)	3.00	-1 Ga(2)	3.00
		-2 Ga(3)	2.58
		-1 Ga(3)	2.79

Table 1 gives the complete diffraction data for chromium $K\alpha$ radiation, and shows the satisfactory agreement between observed and calculated values. The discrepancies between the observed and calculated sin² θ values are due to absorption displacement of the diffracted lines. The intensities were calculated with an IBM 7094 program written by A. C. Larson (1964).

PuGa₆

The diffraction lines of the $PuGa_6$ pattern correspond to a primitive tetragonal cell with

$$a = 5.942 \pm 0.001$$
, $c = 7.617 \pm 0.001$ Å

The cell contains two formula units, giving a calculated density of $8 \cdot 11$ g.cm⁻³.

Reflections $h\bar{k}0$ are absent for odd h+k, and reflections h0l are absent for odd h. The suggested symmetry is thus P4/nbm, and the following structure was readily deduced.

2 Pu in 2(c): $(\frac{1}{2} 0 0) (0 \frac{1}{2} 0)$ 4 Ga(1) in 4(g): $\pm (0 0 z) (\frac{1}{2} \frac{1}{2} z)$ with $z=0.167 \pm 0.008$ 8 Ga(2) in 8(m): $(x, \frac{1}{2}+x, z) (x, \frac{1}{2}-x, \bar{z}) (\bar{x}, \frac{1}{2}-x, z)$ $(\bar{x}, \frac{1}{2}+x, \bar{z}) (\frac{1}{2}+x, x, \bar{z}) (\frac{1}{2}+x, \bar{x}, z)$ $(\frac{1}{2}-x, \bar{x}, \bar{z}) (\frac{1}{2}-x, x, z)$ with $x=0.187 \pm 0.005$, $z=0.350 \pm 0.006$.

Table 2 gives the complete set of diffraction data for Cr $K\alpha$ radiation. The intensities were calculated from the formula

$I \propto |F|^2 p A (1 + \cos^2 2\theta) / \sin^2 \theta \cos \theta$

where p is the permutation factor and A the absorption factor for a cylindrical specimen with $\mu r = 5.0$. The f curves of Cromer & Waber (1965) for neutral atoms were assumed, and dispersion corrections were applied using Cromer's values (1965).

The bond lengths, with extreme errors, are

Table 2.	Diffraction	data for	PuGa ₆	(Cr	$K\alpha$)

	104 si	$n^2 \theta$	Inte	nsity		104 si	$n^2\theta$	Inter	nsity
hkl	calc.	obs.	obs.	calc.	hkl	calc.	obs.	obs.	calc.
001	226	238	vw-	2.2	401	6165	6188	m+	7.4
110	742	759	UW	2.0	115	6389	6416	w	2.1
002	904	926	trace	0.3	411	6536	6561	171	9.2
111	968	990	<i>w</i> –	3.6	224	6584			0.6
200	1485	1513	vw +	2.3	330	6681	6702	w	4.9
112	1646	1672	т	13.1	402	6843	6864		∫ 2·4
201	1711	1735	vs	28.7	323	6859	0804	vw+	j 0·1
003	2033	2063	w	4.6	331	6907 [´]			` 0·6
211	2082	2109	m-	7.4	205	7132	7148	m	8.9
202	2389	2419	w +	5.5	412	7214	7230	m+	14.7
212	2760)	2798		∫ 8·4	314	7326	7339	<i>vs</i>	30.2
113	2775 👔	2798	vs	j 18·8	420	7424	7439	m	14.9
220	2970 [´]	2995	S	<u>`16∙3</u>	215	7503	7518	w +	8.5
221	3196	3222	w+	4.2	332	7585	7601	w	5.7
203	3518	3543	vw +	2.3	421	7650	7660	S	20.5
004	3614	3635	vvw	0.4	403	7972	7984	vvw	1.4
310	3712	3724	UUW	0.8	006	8132	8142	т	12.8
222	3874)	2002		[1·2	422	8328)	8338		∫ 7·7
213	3889	3902	vw-	∫ 0·6	413	8343 j	0330	<i>m</i> –	{ 2·2
311	3938 ´	3961	т	`7∙8	324	8440			0.8
114	4356	4378	m-	5.7	225	8617	8626	m-	15.0
312	4616	4639	<i>s</i> +	17.5	333	8714	8717	vvs	66.6
223	5003	5022	w	3.8	116	8874	8879	vw+	3.1
321	5052			0.7	315	9359	9361	m+	14.9
204	5099	5123	m	8.0	423	9457	9460	w —	7.3
214	5470	5497	UW	2.1	431	9506	9507	vw + *	5.8
005	5647	5674	vw-	1.8	404	9553	9556	w +	9.2
322	5730	57(0	_	(1·0	206	9617	9617	m	16.7
313	5745	5769	S	j́ 11∙8	510	9651	9651	m + *	14.7
400	5939	5963	т	5.6	511	9877	9877	m	18.9

* Coincidence with α_2 -line of preceding reflection.

Ga(1)-4 Pu	3.23 ± 0.03 Å	$-4 \text{ Ga}(2) \ 3.06 \pm 0.02$
-1 Ga(1)	$2{\cdot}54\pm0{\cdot}13$	-1 Ga(2) 3.15 ± 0.07
-4 Ga(2)	2.58 ± 0.05	$-2 \text{ Ga}(2) \ 3.19 \pm 0.10$

The mean value Pu-12 Ga = 3.18 Å is considerably larger than the distance Pu-13 Ga = 3.08 Å observed in PuGa₄, and suggests that the effective valence of plutonium is four in PuGa₆ and closer to five in PuGa₄.

In gallium metal each atom forms seven bonds, one of length 2.44 Å and six in the range 2.71-2.80 Å. Short Ga–Ga bonds of 2.45 Å also occur in PuGa₂ (Ellinger, Land & Struebing, 1965).

The authors are grateful to V. O. Struebing for preparation of the alloys, to M. Gibbs and P. Vigil for aid in obtaining the X-ray data, and to D. T. Cromer for the $PuGa_4$ intensity and interatomic distance calculations.

References

- CROMER, D. T. (1965). Acta Cryst. 18, 17.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.
- ELLINGER, F. H., LAND, C. C. & STRUEBING, V. O. (1964). J. Nuclear Materials, 12, 226.
- LAND, C. C., ELLINGER, F. H. & JOHNSON, K. A. (1965). J. Nuclear Materials. To be published.

LARSON, A. C. (1964). Unpublished work.

Acta Cryst. (1965). 19, 283

Hybrid solid solution. By GABRIELLE DONNAY, Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C., U.S.A.

(Received 5 January 1965)

The purpose of this note is to draw the attention of crystallographers to the existence of an unusual kind of solid solution, which was discovered by Kushiro & Schairer (1963). Forsterite, Mg₂SiO₄, an orthosilicate (isolated tetrahedra), forms a limited solid solution in diopside, CaMg Si_2O_6 , a metasilicate (chains of tetrahedra). Such a solid solution, which not only involves the usual topological rearrangements of the crystal structure of the solvent, but also requires changes in the anionic building blocks themselves, is here called a hybrid solid solution. In the three common types of solid solution, substitution, addition and omission, minor structural rearrangements accompany the variations in composition; no strong linkages, such as Si-O bonds, are broken. In the present case the ratio of tetrahedrally coordinated cation to oxygen changes from 1:3 in diopside towards 1:4 in forsterite. Drastic structural rearrangements must take place, which will be shown to involve more than one type of solid solution. The three most likely hypotheses will be discussed in turn. A fourth one, involving cation vacancies at the centers of oxygen tetrahedra will be presented by Kushiro & Schairer in the forthcoming publication of their phase-diagram study.

Above 1300 °C and up to the melting point, forsterite can amount to about 5 weight per cent of the solid solution

Turne

in diopside, so that the composition can be written in moles per cent: $Di_{93}Fo_7$. For reference in the subsequent discussion we write:

$$CaMgSi_2O_6 + 0.08 Mg_2SiO_4 = CaMg_{1.16}Si_{2.08}O_{6.32}$$
.

1. If the number of silicon atoms is considered constant, the formula becomes $Ca_{0.96}Mg_{1.12}Si_{2.00}O_{6.08}$ or, for x moles of forsterite to one mole of diopside, $(Ca_{1-y}Mg_y) Mg_{1+2y}$ Si₂ O_{6+2y} , where y = x/(2+x).

The Si/O ratio is now less than $\frac{1}{3}$ and some of the silicon tetrahedra must share only one corner instead of two. This would result from breaking one Si–O bond in the Si₂O₆⁻ chain, and adding one oxygen atom to the depleted tetrahedron. The broken ends of the chain must move apart and one of the added magnesium ions would fit between them. Moreover, for every two such magnesium ions, one more magnesium ion is added, which substitutes for calcium. The cells where the breaks occur must be randomly distributed. Since there are four diopside formula units per cell, the maximum number of chain-breaks is $4 \times 0.08 = 0.32$, or about one in every three unit cells.

2. If the number of oxygen atoms is considered constant, the formula becomes $Ca_{0.95}Mg_{1.10}Si_{1.97}O_{6.00}$.

Domaite

Fermanla

Formersla

5 1	Iype	Formula	weight	calc.
End member	Diopside	$CaMgSi_2O_6$	216.56	3·275* g.cm ⁻³
	Substitution and double addition: broken chains	$\begin{array}{l}(Ca_{0\cdot 96}Mg_{0\cdot 04})Mg_{1\cdot 08}\\Si_{2}O_{6\cdot 08}\end{array}$	219.18	3.315
Hybrid solid solution	Double substitution and addition: Si-Mg chains	$\begin{array}{c} (Ca_{0\cdot 95}Mg_{0\cdot 05})Mg_{1\cdot 02} \\ (Si_{1\cdot 97}Mg_{0\cdot 03})O_{6} \end{array}$	216.145	3·269
	Double substitution and omission: crosslinked Si-Mg chains	$\begin{array}{c} (Ca_{0} \cdot _{94}Mg_{0} \cdot _{06})Mg\\ (Si_{1} \cdot _{96}Mg_{0} \cdot _{04})O_{5} \cdot _{96}\end{array}$	214.88	3.250

* Observed densities for diopside, quoted from the literature by Deer, Howie & Zussman (1963), range from 3.22 to 3.38 g.cm⁻³. No densities have been determined for the solid solutions.